118TH CONGRESS	\mathbf{C}	
1st Session		
		

To improve coordination between the Department of Energy and the National Science Foundation on activities carried out under the National Quantum Initiative Program, and for other purposes.

IN THE SENATE OF THE UNITED STATES

Mrs. Blackburn (for herself and Mr. Peters) introduced the following bill; which was read twice and referred to the Committee on

A BILL

To improve coordination between the Department of Energy and the National Science Foundation on activities carried out under the National Quantum Initiative Program, and for other purposes.

- 1 Be it enacted by the Senate and House of Representa2 tives of the United States of America in Congress assembled,
 3 SECTION 1. COORDINATION BETWEEN DEPARTMENT OF
 4 ENERGY AND NATIONAL SCIENCE FOUNDA5 TION ON ACTIVITIES UNDER NATIONAL
 6 QUANTUM INITIATIVE.
 7 (a) IN GENERAL.—Section 102 of the National
- 8 Quantum Initiative Act (15 U.S.C. 8812) is amended—

1	(1) by redesignating subsection (e) as sub-
2	section (d); and
3	(2) by inserting after subsection (b) the fol-
4	lowing:
5	"(c) Liaison Between Department of Energy
6	AND NATIONAL SCIENCE FOUNDATION.—The Director of
7	the Coordination Office shall appoint a member of the
8	staff of the Coordination Office to serve as a liaison be-
9	tween the Department of Energy and the National Science
10	Foundation to ensure the coordination, and avoid unneces-
11	sary duplication, of the Department and the Foundation
12	activities under the Program.".
13	(b) Sense of Congress.—It is the sense of Con-
14	gress that activities and research carried out by the De-
15	partment of Energy and the National Science Foundation
16	should include, to the extent practicable, all quantum in-
17	formation science technologies, as well as critical quan-
18	tum-enabling technologies, including—
19	(1) gate-based quantum computing;
20	(2) annealing-based quantum computing;
21	(3) quantum bit (qubit) technologies, including
22	those based on—
23	(A) topological materials;
24	(B) photons;
25	(C) trapped ions;

1	(D) neutral atoms;
2	(E) silicon;
3	(F) superconducting devices; and
4	(G) any other viable quantum technology
5	and
6	(4) quantum-enabling technologies, including—
7	(A) single photon sources;
8	(B) lasers;
9	(C) radio frequency, microwave, and other
10	electronics;
11	(D) electron spin;
12	(E) cryogenic technologies;
13	(F) low-disorder or low-defect materials de-
14	velopment and fabrication; and
15	(G) any other critical enabling technology
16	SEC. 2. ESTABLISHMENT OF MANUFACTURING USA INSTI-
17	TUTE FOR QUANTUM MANUFACTURING.
18	(a) Definition of Manufacturing USA Insti-
19	TUTE.—In this section, the term "Manufacturing USA in-
20	stitute" has the meaning given such term in section 34(d)
21	of the National Institute of Standards and Technology Act
22	(15 U.S.C. 278s(d)).
23	(b) Establishment of Manufacturing USA In-
24	STITUTE.—The Secretary of Commerce, acting through
25	the Director of the National Institute of Standards and

1	Technology, and in consultation with the Secretary of En-
2	ergy, shall—
3	(1) determine the manufacturing capabilities
4	necessary to produce reliable quantum components
5	and systems at scale and the gaps in access to such
6	capabilities; and
7	(2) establish, or award financial assistance,
8	under section 34(e)(1) of the National Institute of
9	Standards and Technology Act (15 U.S.C.
10	278s(e)(1)) to plan, establish, or support, a Manu-
11	facturing USA institute that—
12	(A) provides an end-to-end manufacturing
13	ecosystem addressing quantum computing,
14	quantum sensing, and quantum communication;
15	(B) includes within the end-to-end eco-
16	system provided pursuant to paragraph (1) the
17	capability to design, fabricate, and test mate-
18	rials, devices, structures, and manufacturing
19	processes for quantum technologies or systems,
20	as well as the capacity to develop and create
21	jobs for a coordinated advanced manufacturing
22	and quantum engineering workforce;
23	(C) provides access to prototyping, both at
24	research scale and commercial scale, for re-
25	searchers and developers working on quantum

1	component technologies and systems and manu-
2	facturing process innovations to facilitate the
3	transition into scalable, cost-effective, and high-
4	performing manufacturing capabilities;
5	(D) supports the development of a resilient
6	quantum supply chain with an emphasis on key
7	components and supply from allies of the
8	United States, that enables quantum tech-
9	nologies, and increases the domestic production
10	of goods critical to national security and eco-
11	nomic competitiveness; and
12	(E) supports development of a workforce
13	with skills relevant to manufacture of quantum
13 14	with skills relevant to manufacture of quantum components and systems.
	-
14	components and systems.
14 15	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INI-
14151617	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INITIATIVE PROGRAM.
14151617	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INITIATIVE PROGRAM. (a) INDEPENDENT STUDY ON PROGRESS MADE BY
14 15 16 17 18	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INITIATIVE PROGRAM. (a) INDEPENDENT STUDY ON PROGRESS MADE BY NATIONAL QUANTUM INITIATIVE PROGRAM.—
141516171819	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INITIATIVE PROGRAM. (a) INDEPENDENT STUDY ON PROGRESS MADE BY NATIONAL QUANTUM INITIATIVE PROGRAM.— (1) AGREEMENT.—The Director of the Office of
14 15 16 17 18 19 20	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INITIATIVE PROGRAM. (a) INDEPENDENT STUDY ON PROGRESS MADE BY NATIONAL QUANTUM INITIATIVE PROGRAM.— (1) AGREEMENT.—The Director of the Office of Science and Technology Policy shall seek to enter
14 15 16 17 18 19 20 21	components and systems. SEC. 3. STUDIES RELATING TO NATIONAL QUANTUM INITIATIVE PROGRAM. (a) INDEPENDENT STUDY ON PROGRESS MADE BY NATIONAL QUANTUM INITIATIVE PROGRAM.— (1) AGREEMENT.—The Director of the Office of Science and Technology Policy shall seek to enter into an agreement with the National Academies of

1	(2) Independent study.—Under an agree-
2	ment between the Director and the National Acad-
3	emies under this subsection, the National Academies
4	shall carry out an independent study to assess the
5	progress made by the National Quantum Initiative
6	Program in achieving the purposes set forth under
7	section 3 of the National Quantum Initiative Act (15
8	U.S.C. 8802) and the goals of the Program, includ-
9	ing with respect to sensing, communications, com-
10	puting, and workforce development for near-term de-
11	velopment and quantum applications.
12	(b) Study on Impediments to Collaboration
13	Under National Quantum Initiative Program.—
14	(1) Study and report.—Not later than 180
15	days after the date of the enactment of this Act, the
16	consortium convened by the Director of the National
17	Institute of Standards and Technology pursuant to
18	section 201(b)(1) of the National Quantum Initiative
19	Act (15 U.S.C. 8831(b)(1)) shall—
20	(A) conduct a study—
21	(i) on the impediments to collabora-
22	tion under the National Quantum Initia-
23	tive Program implemented pursuant to sec-
24	tion 101(a) of such Act (15 U.S.C.
25	8811(a)) between Multidisciplinary Centers

1	for Quantum Research and Education es-
2	tablished under section 302(a) of such Act
3	(15 U.S.C. 8842(a)), National Quantum
4	Information Science Research Centers es-
5	tablished and operated pursuant to section
6	402(a)(1) of such Act (15 U.S.C
7	8852(a)(1)), industry, and academia; and
8	(ii) to develop recommendations for
9	legislative action to eliminate or mitigate
10	such impediments; and
11	(B) submit to the Committee on Com-
12	merce, Science, and Transportation of the Sen-
13	ate and the Committee on Science, Space, and
14	Technology of the House of Representatives a
15	report on the findings of the consortium with
16	respect to the study conducted pursuant to
17	paragraph (1).
18	(2) Contents.—The report submitted under
19	paragraph (1)(B) shall include the following:
20	(A) An overview of the current state of re-
21	search being conducted under the National
22	Quantum Initiative Program.
23	(B) A breakdown of the funding under the
24	Program for near-term quantum applications
25	development, disaggregated by different quan-

8

1	tum technologies, including computing (anneal-
2	ing and gate-model with the different types of
3	qubit technologies), sensing, communication,
4	and networking.
5	(C) Identification of potential risks in the
6	research funded under the Program.